読者です 読者をやめる 読者になる 読者になる

studylog/北の雲

chainer/python/nlp

非負値行列因子分解(NMF)

行列を分解して特徴を抽出する?非負値行列因子分解について勉強中。

雑感

ドキュメント群を教師無しのカテゴリ分けする場合に使えるか?
潜在意味解析(LSA)してk-meansするのとどう違うのかわからない

クラスタリングに使う際のクラス数について Consensus Clustering

Nonnegative matrix factorization(NMF)でconsensus clustering

NMFの便利なところは元の特徴(この論文の場合は遺伝子発現量)からより少ない任意の特徴量(論文中ではmetagene)に変換できるところであり、さらにそのままクラスターの分割に利用できる。

たとえば2つのmetageneで表現した場合、より発現量の大きいmetageneで分割すれば2つのクラスに分けられる。

続いて、重要なのがクラスの安定性である。要するに最適なクラスタの数はいくつなのかということである。これに対して、この論文ではConsensus Clusteringというリサンプリングと隣接行列(connectivity matrix)を利用する方法をモディファイした方法を使っている。

この画像の見方がよくわからないけれど0と1がくっきり分かれているほどいいクラス数ってことなのかな。青と茶色に綺麗に分かれている方がいいと。